Proximally Compatible Mappings and Common Best Proximity Points

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On best proximity points for multivalued cyclic $F$-contraction mappings

In this paper, we establish and prove the existence of best proximity points for multivalued cyclic $F$- contraction mappings in complete metric spaces. Our results improve and extend various results in literature.

متن کامل

Common best proximity points for $(psi-phi)$-generalized weak proximal contraction type mappings

In this paper, we introduce a pair of generalized proximal contraction mappings and prove the existence of a unique best proximity point for such mappings in a complete metric space. We provide examples to illustrate our result. Our result extends some of the results in the literature.

متن کامل

Best proximity points of cyclic mappings

Given A and B two subsets of a metric space, a mapping T : A∪B → A∪B is said to be cyclic if T (A) ⊆ B and T (B) ⊆ A. It is known that, if A and B are nonempty and complete and the cyclic map verifies for some k ∈ (0, 1) that d(Tx, Ty) ≤ kd(x, y) ∀ x ∈ A and y ∈ B, then A∩B 6= ∅ and the mapping T has a unique fixed point. A generalization of this situation was studied under the assumption of A ...

متن کامل

Common fixed points and best proximity points of two cyclic self-mappings

*Correspondence: [email protected] 1Instituto de Investigacion y Desarrollo de Procesos, Universidad del Pais Vasco, Campus of Leioa (Bizkaia), Aptdo. 644, Bilbao, Bilbao 48080, Spain Full list of author information is available at the end of the article Abstract This paper discusses three contractive conditions for two 2-cyclic self-mappings defined on the union of two nonempty subsets of ...

متن کامل

Common Best Proximity Points: Global Optimal Solutions

Let S : A→ B and T : A→ B be given non-self mappings, where A and B are non-empty subsets of a metric space. As S and T are non-self mappings, the equations Sx = x and T x = x do not necessarily have a common solution, called a common fixed point of the mappings S and T . Therefore, in such cases of nonexistence of a common solution, it is attempted to find an element x that is closest to both ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2020

ISSN: 2073-8994

DOI: 10.3390/sym12030353